American Water Works Association 2003 CA-NV Annual Fall Conference

Optimization of Dual-Staged Nanofiltration Membranes for Seawater Desalination

Tai Tseng, Robert Cheng, Diem Vuong, and Kevin Wattier
Long Beach Water Department
October 7, 2003

Presentation Outline

- Long Beach Overview
- Dual-Staged NF Process
- Pilot Testing (3 phase)
- Conclusion
- Next Step

Long Beach Water Department

- California's 5th most populous city (480,000 people)
- 70,000 AF of drinking water per year
- 5,500 AF of reclaimed water per year
- Operate largest GW treatment plant in US
- 912 miles of drinking water lines
- 763 miles of sewer lines

Long Beach Water Department

Future Reliability

- Very little population growth
- Expansion of recycled water and water conservation
- Seawaterdesalination ==>necessary

supplement
City's imported
drinking water supply

"Traditional" RO Process

- Uses pressures in excess of 800 psi
- Energy intensive
- High-pressure materials required ⇒ high capital costs
- "Traditional" seawater desalination method cost prohibitive

Nanofiltration Process

Patent pending dual-staged process

- Energy savings
 - Lower pressure requirements ==> Lower energy consumption
- Quality protection
 - Two physical barriers

Pilot Plant

Overview

Phase 1

- 3 manufacturers / 4 nanofiltration membranes evaluated:
 - Dow/FilmTec
 - Koch/Fluid Systems
 - Osmonics
- Process Schematic

Phase 1 Results

Phase 2

Membrane A was selected for phase 2 testing

Phase 2 Test Condition

Operational data

Parameter	Units	Stage 1	Stage 2
Flux (26°C)	gfd	8.4	18
Flux (20°C)	gfd	7	16
Applied P	psi	560	230
Recovery	%	40	73

Phase 2 Test Results

Water quality

		Raw	Stage 1	Stage 2	LBWD
	Unit	Seawater	Permeate	Permeate	Тар
Mg ²⁺	mg/L	1532	28	0.2	13
Ca ²⁺	mg/L	546	10.1	0.1	39
SO ₄ ²⁻	mg/L	2888	33	0.2	100
Na ⁺	mg/L	11912	1280	92	75
CI ⁻	mg/L	19737	1806	117	59
TDS	mg/L	37480	3247	218	390
Hardness (as CaCO ₃)	mg/L	7755	140	1.26	151
pН		8.01	7.84	7.37	8.16
LSI		1.12	-1.93	-4.56	0.34

Phase 3 – NF Optimization

- Need to come up with a hybrid system
- Optimization
 - Mix membranes between stages (i.e., different membranes in stage 1 vs. Stage 2)
 - Mix membranes within a vessel to come up with a optimal permeate WQ and flux

Phase 3 - NF Optimization

Membrane Technical Specification, 25°C

General Information				Test Conditions					
					MgSO ₄		NaCl		
			Area	Product		Min		Min	Р
Manufacturer	Model	Mat'l	(ft ²)	Flow (gpd)	mg/L	Rej.	mg/L	Rej.	(psi)
FilmTec	NF90	PA	80	1,850	2,000	95%			70
Hydranautics	ESPA1	PA	85	4,000			1,500	99%	225
Hydranautics	ESPA2	PA	85	3,000			1,500	99%	225
Hydranautics	ESPA4	PA	85	2,500			1,500	99%	225
Trisep	ACM4	PA	81	3,200			2,000	98%	100
Trisep	TS80	PA	81	2,000	2,000	97%			100
Trisep	X20	PA	81	2,000			2,000	99%	100

Phase 3 Results - Recovery

Phase 3 Results – TDS

Phase 3 Results - Power

- HP = Q * P * 2.3 / (3960 * e)
 - Standard efficiencies (75% 82%)
 - included additional energy losses
- kW = 0.746 * HP

Phase 3 Results - Power

Phase 3 Results

Conclusions

- Dual-staged NF process provides flexibility
- Opportunity to use less costly materials
- A wide range of membranes manufacturers
- General permeate WQ consistent with single-pass SWRO
- Theoretical power cost on lower range of "literature values"
- Power cost comparisons are difficult due to varying end product quality

Future Work

- AWWARF TC (challenge testing/ modeling/ corrosion)
- A 300,000 gpd demonstration facility is under design and is expected to be completed by the first part of 2004
- Future research will focus on:
 - Pretreatment
 - Boron removal
 - Post-treatment
 - Brine discharge
 - Long-term membrane performance
 - Physically test energy recovery devices (ERD)
 - Detailed cost information
 - Treatment performance as a whole

Questions

1.1 Gigawatts